Data in Brief 7 (2016) 177-182

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data supporting attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts

Caroline Moerke^a, Petra Mueller^a, Barbara Nebe^{a,*}

^a University Medical Center Rostock, Department of Cell Biology, Rostock, Germany

ARTICLE INFO

Article history: Received 16 October 2015 Received in revised form 10 November 2015 Accepted 6 February 2016 Available online 17 February 2016

ABSTRACT

The provided data contains the phagocytic interaction of human MG-63 osteoblasts with micro-particles 6 μ m in size as well as geometric micro-pillared topography with micro-pillar sizes 5 μ m of length, width, height and spacing respectively related to the research article entitled "Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts" in the *Biomaterials* journal. [1] Micro-particle treatment was used as positive control triggering phagocytosis by the osteoblasts. Caveolin-1 (Cav-1) as major structural component of caveolae [2] plays an important role in the phagocytic process of micro-particles and -pillars. Data related to the experiments in [1] with siRNA-mediated knockdown are presented here as well as micro-pillared topography and initial cell interaction with the micro-pillars.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject areaBiologyMore specific subject areaOsteoblast interaction with biomaterial topographies

DOI of original article: http://dx.doi.org/10.1016/j.biomaterials.2015.10.030 * Corresponding author.

E-mail address: barbara.nebe@med.uni-rostock.de (B. Nebe).

http://dx.doi.org/10.1016/j.dib.2016.02.023

2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Type of data	Images, Movie
How data was	Confocal Laser Scanning Microscope (LSM780; Carl Zeiss), SEM (DSM910A; Carl
acquired	Zeiss)
Data format	Raw data
Experimental	Effect of micro-pillared topography and micro-particles on osteoblast cell
factors	behavior
Experimental	Visualization of protein localization changes via immuno-labeling after particle
features	treatment and on the micro-pillared topography; cell morphology changes after
	micro-particles treatment
Data source location	University Medical Center Rostock, Germany
Data accessibility	Data is available in this article and related to [1]

Value of the data

- The data inform future studies of topography-induced phagocytic responses of osteoblasts, which
 is of relevance for designing new implant surfaces.
- Micro-pillared topography has an enormous effect on the actin arrangement but no impact on tubulin cytoskeleton organization, thus the data inform about the complexity of cellular reactions on biomaterial topographies.
- Utilizing 6 μm sized particles showed triggering phagocytosis in osteoblasts with CD68 involvement and only partial Caveolin-1 dependency relevant for researches in the implant weardebris area.
- The data displays the independence of Caveolin-1 on actin reorganization during phagocytosis.

1. Data, experimental design, materials and methods

1.1. Micro-particle treatment of human MG-63 cells and SEM sample preparation

MG-63 (American Type Culture Collection ATCC[®], CRL-1427) were grown in Dulbecco's modified eagle medium (DMEM, Life Technologies GmbH, Darmstadt, Germany) with 10% fetal calf serum (FCS) (Biochrom FCS Superior, Merck KGaA, Darmstadt, Germany) and 1% gentamycin (Ratiopharm GmbH, Ulm, Germany) at 37 °C in a humidified atmosphere with 5% CO₂. Cells were seeded on cover glasses and incubated for 1 h at 37 °C and 5% CO₂ to ensure adhesion. Afterwards the cells were incubated with melamine particles 6 μ m in size marked with FITC (Sigma Aldrich) in a concentration of 10⁵ ml⁻¹ for 24 h. For SEM sample preparations cells were washed with PBS three times and then fixed with 2.5% glutardialdehyde (Merck KGaA) for 1 h at RT, dehydrated through a graded series of ethanol (30%, 50%, 75%, 90% and 100% for 5, 5, 15, 10 min and twice for 10 min, respectively) dried in a critical point dryer (K 850, EMITECH, Taunusstein, Germany) and then samples were sputtered with gold for 100 s (layer ca. 20 nm) (SCD 004, BAL-TEC, Wetzlar, Germany).

1.2. Immunofluorescence staining

Osteoblastic cells were cultured on the Ti arrays described in [1, 3] and after micro-particle treatment for 24 h, washed three times with PBS and then fixed with 4% paraformaldehyde (PFA) (10 min; room temperature, RT) (Sigma-Aldrich). After washing thrice with PBS, the cells were permeabilized with 0.1% Triton X-100 (10 min, RT) (Merck), washed again three times with PBS and blocked with 2% bovine serum albumin (BSA) (Sigma-Aldrich) in PBS (30 min, RT). For actin filament staining, cells were incubated with phalloidine coupled with tetramethyl-rhodamine (TRITC) (5 μ g/ml in PBS) (Sigma-Aldrich). The following primary antibodies (diluted in PBS) were used for the immunolabeling at RT for 1 h: polyclonal rabbit anti-caveolin-1 (New England Biolabs GmbH) (1:400), polyclonal rabbit anti-CD68 (Proteintech Europe Inc.) (1:25), monoclonal mouse anti- α tubulin (1:50). Secondary antibodies anti-rabbit-IgG-AF488, anti-mouse-IgG-AF488 and anti-rabbit-IgG-AF546 (Life

Technologies, diluted 1:200 in PBS) were applied for 30 min at RT. The samples were embedded with fluoroshield mounting media (Sigma-Aldrich). Image acquisition was performed with the ZEISS oil immersion objective (C-Apochromat63) and the ZEN 2011 (black version) software (Carl Zeiss AG). Images were displayed as three dimensional (3D) z-stacks (13 stacks with an interval of 1 μ m) in addition with a 2D *xz*- and *yz*-plane at micro-particle experiments.

1.3. Cav-1 transfection

Small interfering RNA (siRNA) against Cav-1 as well as control siRNA were obtained from Ambion (Life Technologies GmbH). For the transfection, 30,000 MG-63 cells were seeded in a 24-well plate and cultured overnight. Then the cells were transfected with 50 nM siRNA using MG-63 Transfection Reagent (Altogen Biosystems, Las Vegas, NV, USA) according to the manufacturer's instructions. 48 h after the transfection the cells were ready for further experiments. For once they were treated for 24 h with 6 µm particles and they were also trypsinated and seeded onto the Ti arrays for 24 h.

1.4. Live cell imaging

For the observation of actin in living cells, the GFP-actin baculovirus expression vector (CellLightTM Actin-GFP BacMam 2.0, Life Technologies) was transfected into MG-63 cells according to the manufacturer's protocol. Cells were cultured for over 24 h to examine GFP-actin expression. Afterwards the cells were trypsinized and seeded onto the Ti arrays for 15 min to ensure adhesion. Then the Ti arrays were placed into an IBIDI μ -Dish 35 mm high (Ibidi LCC) with the adherent cells towards the bottom of the dish containing 2 ml of DMEM. The actin dynamics of the vital cells was visualized with the inverted confocal laser scanning microscope using a 20 × (EC Plan-Neofluar) objective (Carl Zeiss AG) under incubation at 37 °C and 5% CO₂. Thus actin dynamics were visualized with cultivation against gravity so the cells hanging upside down only secured by the adhesion. Image acquisition was every 10 min for 7 h and converted into a video via the ZEN 2011 (black version) software.

Fig. 1. 6 μ m particle distributions after phagocytosis in human MG-63 cells. (A) cell morphology visualized by SEM (1000 × magnification, bar 20 μ m) and (B) actin fluorescent labeling displaying 3D z-stack image with confocal *xz*-plane (above) and *yz*-plane (right); bar 20 μ m.

Fig. 2. Actin cytoskeleton organization during micro-particle treatment after siRNA-mediated Caveolin-1 (Cav-1) knockdown in MG-63 osteoblasts. Bars 20 μ m (left) and 5 μ m (right).

Fig. 3. Actin cytoskeleton (red) organization after siRNA mediated Caveolin-1 (Cav-1) knockdown in MG-63 osteoblasts after 24 h on planar reference (Ref) and micro-pillars (P-5 \times 5). For verification of Cav-1 knockdown Cav-1 was immuno-labeled in green, equal setting for the image acquisition, bars 20 μ m and for 5 \times zoom 5 μ m.

Fig. 4. CD68 localization in MG-63 cells treated with $6 \mu m$ particles for 24 h. Bar left 20 μm and right $5 \mu m$ for $5 \times$ zoom.

Fig. 5. α -Tubulin immuno-labeling of MG-63 osteoblasts after 24 h on the micro-pillars (P-5 × 5) and the planar reference (Ref) (left and middle bar 20 μ m, right 5 μ m).

2. Data

2.1. Micro-particle uptake and distribution

In Fig. 1 the cell morphology and actin cytoskeleton organization of human MG-63 cells after micro-particle treatment is presented. The cells phagocytize several micro-particles during 24 h incubation time. All particles were concentrated and not freely distributed inside the cells.

2.2. Actin cytoskeleton organization after siRNA-mediated Cav-1 knockdown in MG-63 cells after microparticle treatment and on the micro-pillared topography

The actin cytoskeleton after Cav-1 attenuation was arranged in short filaments around noninternalized particles, which were washed away during the preparation (Fig. 2). The images show a reduced particle phagocytosis by MG-63 cells, but no complete inhibition of the phagocytosis, as reported in the past. [4]

The MG-63 osteoblasts with siRNA mediated Cav-1 knockdown grown on the micro-pillars indicated the same rearrangement of the actin cytoskeleton as seen in control cells, illustrated by Fig. 3.

2.3. CD68 localization after micro-particle phagocytosis

Immunofluorescence staining showed an enrichment of CD68 around internalized particles $6\,\mu m$ in size, presented by Fig. 4.

2.4. α -Tubulin localization in MG-63 osteoblasts on micro-pillared topography

Fig. 5 displayed an unaltered α -Tubulin organization in MG-63 cells grown on the micro-pillared topography.

2.5. Initial cell dynamic on the micro-pillared topography

The MG-63 cells are actively testing the underlying topography with their filopodia during the first 6 h after cell seeding onto the micro-pillared topography, shown by Movie 1.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j. dib.2016.02.023.

Acknowledgments

This research was supported by the DFG Graduate School *welisa* (No. 1505/2) for CM. We thank Norbert Zichner (Center for Microtechnologies ZFM, Chemnitz University of Technology, Germany) for the production of the titanium-coated materials and Marcus Frank (Electron Microscopy Center, University Medical Center Rostock, Germany) for his assistance with electron microscopy.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2016.02.023.

References

- C. Moerke, P. Mueller, B. Nebe, Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts, Biomaterials 76 (2016) 102–114. http://dx.doi.org/10.1016/j.biomaterials.2015.10.030.
- [2] R.G. Parton, M.A. del Pozo, Caveolae as plasma membrane sensors, protectors and organizers, Nat. Rev. Mol. Cell Biol. 14 (2013) 98–112. http://dx.doi.org/10.1038/nrm3512.
- [3] S. Staehlke, A. Koertge, B. Nebe, Intracellular calcium dynamics dependent on defined microtopographical features of titanium, Biomaterials 46 (2015) 48–57. http://dx.doi.org/10.1016/j.biomaterials.2014.12.016.
- [4] L. Pelkmans, A. Helenius, Endocytosis via caveolae, Traffic 3 (2002) 311–320. http://dx.doi.org/10.1034/j.1600-0854.2002.30501.x.